
Towards Automatic Construction of Text-Rich 
Information Networks from Text  

JIAWEI HAN
COMPUTER SCIENCE
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
AUGUST 18, 2022

1



2

Outline
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q Data Preparation: Taxonomy-Guided Text Classification

q Identifying Information Network Primitives: Entities, Properties and Relations

q Conclusion: Towards Theme/Corpus-Based Information Network Construction
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Info. Networks Are Used to Solved Real-World Problems

q Current information networks used in our research
q Knowledge graphs: one gigantic graph for real-

world?
q Citation graphs
q DBLP: authors, venue, keywords, citations & 

affiliations are very different types of links
q Network repository contains ~40 different kinds of 

graphs (https://networkrepository.com/network-
data.php)

q Are we really using our network mining studies 
solving our real-world problems?

q What are the burning problems we are solving ⏤
the real-life problem in scale? Ack. Figures are from Google images

https://networkrepository.com/network-data.php
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Most Real-Life Info. Networks Need to be Constructed
q Most daily life data or the problems to be solved are essentially info. networks 
q News events: essentially information networks to be constructed
q Tweet networks need to be understood from structured text analysis
q University Web pages (departments, professors, courses, students, …) are also 

information networks
q Research literatures are also information networks
q Types, entities, relations of many different types
q Not just meta-data: authors, venues, keywords, citations, ……

q If we want our research or technology to be relevant
q We have to solve real-world network problems

q If we want to solve real-world network problems
q We have to study how construct real-world networks from unstructured data



5

Outline

q What Kinds of Text-Rich Information Networks Do We Really Need?

q Key Issue: Construction of Theme-/Corpus-Based Information Networks 

q The Role of Embedding and PLM in Information Network Construction 

q Data Preparation: Taxonomy-Guided Text Classification

q Identifying Information Network Primitives: Entities, Properties and Relations

q Conclusion: Towards Theme/Corpus-Based Information Network Construction



6

Automated, Local Information Network Construction

q Our General Roadmap: Mining structuring from unstructured text 
q One gigantic knowledge graph vs. many small structured, type networks
q Automated construction vs. human annotated construction

Multi-Faceted 
Taxonomies

Phrases

Fine-grained entities/relations

Text Corpus

Knowledge 

General KB

Multi-Dimensional 
Classification

Knowledge Graph 
& Info Networks
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Representation Learning in Text: Text Embedding
q Distributive representation: Embedding words in lower-dimension space
q Word2Vec (Google), GloVe (Stanford), fastText (Facebook)
q Handling sparsity & high dimensionality: Similar words are embedded closer

q Most text embeddings are trained in the Euclidean space but used on spherical space 
(i.e., cosine similarity)

Word Similarity 
with Word2Vec

Spherical Text Embedding [NeurIPS’19]: 
embeddings are normalized, and 
spherical clustering algorithms are used
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Joint Embedding: Integrating Local and Global Contexts

q Local contexts can only partly define word semantics in unsupervised word 
embedding learning

q Design a generative model on the sphere that follows how humans write articles:

q First a general idea of the paragraph/doc, then start to write down each word 
in consistent with not only the paragraph/doc, but also the surrounding words

Local contexts of 
“harmful”

Document/
Paragraph (𝑑)

Center Word 
(𝑢)

Surrounding Word 
(𝑣)
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Understanding the Spherical Generative Model
Word Similarity: Performance Comparison

Joint Spherical Embedding: Performance Comparison

Global Context Helps Interpreting Acronyms
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q Traditional text embedding (e.g., Word2Vec, GloVe, fastText, JoSE)
q Mapping words with similar local contexts closer in the embedding space
q Not imposing particular assumptions on the type of data distributions  

q CatE: Category Name-guided Embedding [WWW’20]

q Weak guidance: leverages category names to learn word embeddings with 
discriminative power over the specific set of categories

Discriminative Topic Mining via Category Name-Guided Embedding

q CatE: Inputs

q Category names + Corpus

q CatE: Outputs 

q The same set of celebrities are 
embedded differently given 
different sets of category names
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Method of CatE: Category-name guided text Embedding

q A category-name guided text embedding learning module (E): 
q Takes a set of category names to learn category distinctive word embeddings by 

modeling the text generative process conditioned on the user provided categories

q A category representative words retrieval module (R):
q Selects category representative words based on both word embedding similarity 

and word distributional specificity

The two modules (E + R) collaborate in an iterative way: 
q E refines word embeddings and category embeddings  
q R selects representative words that will be used by E 

in the next iteration 
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Performance Study on Discriminative Topic Mining

q Quantitative comparison 
q TC: topic coherence
q MACC: Mean accuracy 

q Qualitative Comparation of 
Discriminative Topic Mining



14

Hierarchical Topic Mining via Joint Spherical Tree 
and Text Embedding [KDD’20]

q JoSH: A joint tree and text embedding method
q Simultaneous modeling of the category tree structure in the 

spherical space
q Effective mining of category representative, hierarchical terms
q Ex. In PubMed literature, finding distinct terms related to 

hormones, enzymes, vitamins, and vaccines
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q Yu Meng, Yunyi Zhang, Jiaxin Huang, Yu Zhang and Jiawei Han, “Topic Discovery via Latent Space 
Clustering of Language Model Embeddings”, in WWW’22

q Task: Automatic discovery of coherent and meaningful topics from text corpora  
q Limitations of topic modeling (a generative process)
q Ignoring word ordering information in text (based on the “bag-of-words” assumption)
q cannot leverage external knowledge to learn word semantics, and 
q Inducing an intractable posterior that requires approximation algorithms

q Why not directly deploy pre-trained language models (PLMs) for topic discovery?

Topic Discovery via Latent Space Clustering of LM Embedding

q The PLM embedding space is partitioned into 
extremely fine-grained clusters and lacks topic 
structures inherently

q PLM embeddings are high-dimensional while 
distance functions can become meaningless 

q Lack of good document representations from PLMs Visualization of 3, 000 randomly sampled contextualized 
word embeddings of BERT:  The embedding spaces do 

not have clearly separated clusters.

http://hanj.cs.illinois.edu/pdf/www22_ymeng.pdf
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Qualitative Evaluation of Topic Discovery



17

Outline

q What Kinds of Text-Rich Information Networks Do We Really Need?

q Key Issue: Construction of Theme-/Corpus-Based Information Networks 

q The Role of Embedding and PLM in Information Network Construction 

q Data Preparation: Taxonomy-Guided Text Classification

q Identifying Information Network Primitives: Entities, Properties and Relations

q Conclusion: Towards Theme/Corpus-Based Information Network Construction



18

WeSTClass: Weakly Supervised Text Classification
q Modeling class distribution in word2vec embedding space

q Word2vec embedding captures skip-gram (local) similarity (i.e., words with 
similar local context windows are expected to have similar meanings)

WeSTClass (Weakly Supervised Text Classification): CIKM’18
WeSHClass (Weakly Supervised Hierarchical Text Classification): AAAI’19
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LOTClass: Label-Name-Only Text Classification [EMNLP’20]

q Yu Meng, et al., “Text Classification Using Label Names Only: A Language Model Self-Training 
Approach” [EMNLP’20]

q Inputs: A set of label names representing each class + unlabeled documents 
q Method (3 steps): Make good use of pre-trained language model (e.g., BERT)
q Step 1. Category understanding via label name replacement (learn topic vocabulary)
q Ex. “sports” → {“soccer”, “basketball”, …} (use pretrained LM to replace category name)

• Learn topic vocabulary using 
label name only

• Make good use of pretrained 
LM (e.g., BERT)

• Result from AGNews dataset
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LOTClass: Label-Name-Only Text Classification

q Step 2: Masked topic prediction: Create contextualized word-level supervisions to 
train the model for predicting a word’s implied topic

Different contexts leads to 
different BERT language 

model prediction

q Step 3: Self-training: Generalize the model via self-training on abundant unlabeled 
data to make document-level topic prediction

Label-name only 
is equiv. to 48 
labels in 
Supervised BERT
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Need: “Structuring”/Tagging Unstructured Documents 

25,000+
candidate classes

15,000+
candidate classes

q Task: Tag each doc. with a set of relevant classes from a huge candidate pool

q Challenges:
q Huge label space, multi-label tagging
q Limited labeled data— hard for supervised models
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TaxoClass [NAACL’21]: Taxonomy Comes to Rescue
q J. Shen, et al. “TaxoClass: Hierarchical Multi-Label Text Classification Using Only 

Class Names”, NAACL’21 
q Taxonomy!— Structure the huge label space by organizing classes hierarchically
q Enable fast label space exploration in a top-down way

q Facilitate multi-label tagging by capturing class relations

Information 
retreival 

Learning 
to Rank

Relevance 
Feedback

RankSVM Implicit 
Feedback

Help you identify

A few most essential core classes

Core class



23

TaxoClass: A Weakly-Supervised Classification 
Method based on Taxonomy

q Shrink the label search space with top-down exploration
q Use a relevance model to filter out completely irrelevant classes for each document

Document Candidate Class

Relevance Model
(e.g., BM25, doc2vec, BERT-NLI)

Document-class Relevance

Di
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TaxoClass: Case Studies

Labeled Class

Core Class

Document

When our son was about 4 months old, doctor said 
we could give him crafted cereal so we bought it. 

It digests well and doesn’t lock up his bowels at all ... 

Product

Baby 
Product

Baby
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Grocery & 
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Inspired by principles of behavioral testing in 
software engineering, we introduce CheckList, a task-

agnostic methodology for testing NLP models…
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Methods
Amazon DBPedia

Example-F1 P@1 Example-F1 P@1

WeSHClass (Meng et al., AAAI’19) 0.246 0.577 0.305 0.536

SS-PCEM (Xiao et al., WebConf’19) 0.292 0.537 0.385 0.742

Semi-BERT (Devlin et al., NAACL’19) 0.339 0.592 0.428 0.761

Hier-0Shot-TC (Yin et al., EMNLP’19) 0.474 0.714 0.677 0.787

TaxoClass (NAACL’21) 0.593 0.812 0.816 0.894

TaxoClass: Performance Comparison

Semi-supervised methods 
using 30% of training set 

Weakly-supervised multi-
class classification method

Amazon: 49K product reviews (29.5K training + 19.7K testing), 531 classes
DBPedia: 245K Wiki articles (196K training + 49K testing), 298 classes

• vs. WeSHClass: better model document-class relevance

• vs. SS-PCEM, Semi-BERT: better leverage supervision signals from taxonomy

• vs. Hier-0Shot-TC: better capture domain-specific information from core classes

Zero-shot method

Example-F1 =!
"
∑#$!" %|'()*! ∩ ,(*-!|

'()*! .|,(*-!|
, P@1 = #-012 3#'4 '0,5! ,(*- -0((*1'

#'0'67 -012
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The ChemNER Framework
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q Fine-grained chemistry type ontology:
q Wikipedia categories rooted under Chemistry
q Categories => Entity Types
q Associated Page Titles => Entity Dictionaries
q Expert proved 62 fine-grained types

Chemistry Ontology
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Chem NER: Performance Comparison
q Dataset:
q Training: 85,702 unlabeled sentences + 62 fine-grained chemistry types
q Test: 3,000 expert-annotated sentences

Method Precision Recall F1 Score
KB-Matching 0.21 0.12 0.15

BiLSTM-CRF (2016) 0.22 0.10 0.14
RoBERTa (2019) 0.24 0.18 0.20

ChemBERTa (2020) 0.18 0.12 0.14
AutoNER (2018) 0.21 0.04 0.06

BOND (2020) 0.19 0.13 0.15
ChemNER (2021) 0.69 0.34 0.46 +0.26 absolution F1 ↑ 

Supervised 
NER

Distant 
NER

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃)

=
#𝑇𝑟𝑢𝑡ℎ 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
#𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙(𝑅)

=
#𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
#𝐺𝑟𝑜𝑢𝑛𝑑 − 𝑇𝑟𝑢𝑡ℎ

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2×𝑃×𝑅
𝑃 + 𝑅
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q What kinds of info. networks do we really need?

q Theme-/corpus-based info. networks 

q Key issue: Automated construction of theme-/corpus-
based info. networks from text

q Exploring the power of embedding and Pre-tained
Language Models (PLMs)  

q Collecting and preparing data using taxonomy-
guided text classification

q Identifying info. networks primitives: entities, 
properties and relations

q Towards theme/corpus-based info. networks 
construction

Conclusions

Ack. Figures are from Google images

Typed Entity-Relation-Property Graphs from Text

Typical KGs from Knowledge-Bases


