

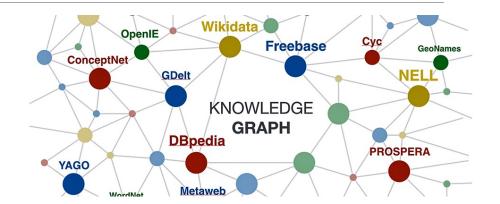
Towards Automatic Construction of Text-Rich Information Networks from Text

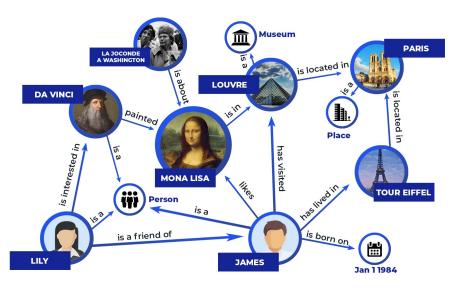
Outline

- What Kinds of Text-Rich Information Networks Do We Really Need?
- Key Issue: Construction of Theme-/Corpus-Based Information Networks
- The Role of Embedding and PLM in Information Network Construction
- Data Preparation: Taxonomy-Guided Text Classification
- Identifying Information Network Primitives: Entities, Properties and Relations
- Conclusion: Towards Theme/Corpus-Based Information Network Construction

Info. Networks Are Used to Solved Real-World Problems

- Current information networks used in our research
 - Knowledge graphs: one gigantic graph for realworld?
 - Citation graphs
 - DBLP: authors, venue, keywords, citations & affiliations are very different types of links
 - Network repository contains ~40 different kinds of graphs (https://networkrepository.com/network-data.php)
 - Are we really using our network mining studies solving our real-world problems?
 - What are the burning problems we are solving the real-life problem in scale?





Ack. Figures are from Google images

Most Real-Life Info. Networks Need to be Constructed

- Most daily life data or the problems to be solved are essentially info. networks
 - News events: essentially information networks to be constructed
 - Tweet networks need to be understood from structured text analysis
 - □ University Web pages (departments, professors, courses, students, ...) are also information networks
 - Research literatures are also information networks
 - ☐ Types, entities, relations of many different types
 - □ Not just meta-data: authors, venues, keywords, citations,
- ☐ If we want our research or technology to be relevant
 - We have to solve real-world network problems
- ☐ If we want to solve real-world network problems
 - We have to study how construct real-world networks from unstructured data

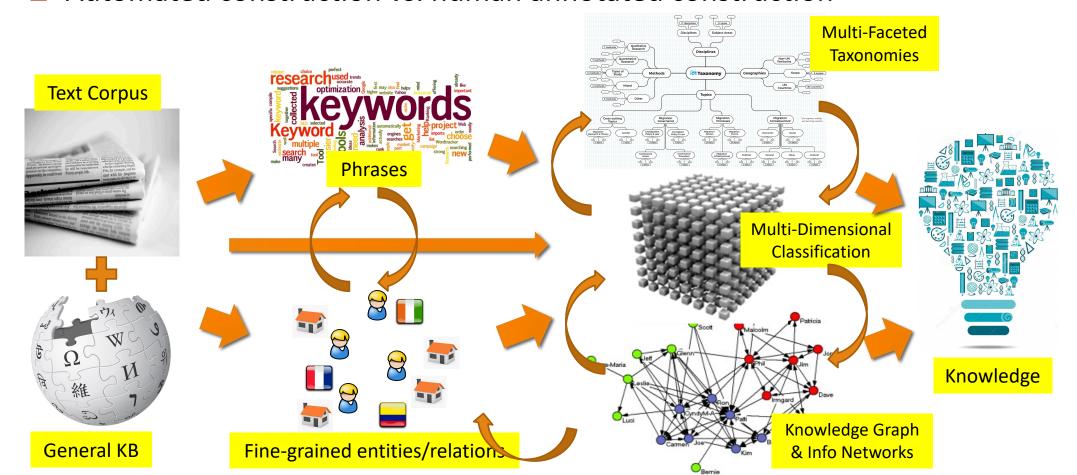
Outline

What Kinds of Text-Rich Information Networks Do We Really Need?

- Key Issue: Construction of Theme-/Corpus-Based Information Networks
- The Role of Embedding and PLM in Information Network Construction
- Data Preparation: Taxonomy-Guided Text Classification
- Identifying Information Network Primitives: Entities, Properties and Relations
- Conclusion: Towards Theme/Corpus-Based Information Network Construction

Automated, Local Information Network Construction

- Our General Roadmap: Mining structuring from unstructured text
 - One gigantic knowledge graph vs. many small structured, type networks
 - Automated construction vs. human annotated construction



Outline

- What Kinds of Text-Rich Information Networks Do We Really Need?
- Key Issue: Construction of Theme-/Corpus-Based Information Networks
- The Role of Embedding and PLM in Information Network Construction

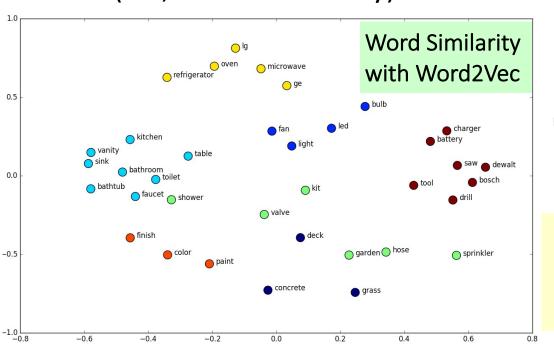
- Data Preparation: Taxonomy-Guided Text Classification
- Identifying Information Network Primitives: Entities, Properties and Relations
- Conclusion: Towards Theme/Corpus-Based Information Network Construction

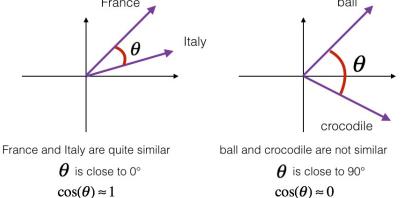
Representation Learning in Text: Text Embedding

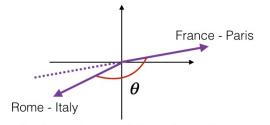
- Distributive representation: Embedding words in lower-dimension space
 - Word2Vec (Google), GloVe (Stanford), fastText (Facebook)
 - □ Handling sparsity & high dimensionality: Similar words are embedded closer

■ Most text embeddings are trained in the Euclidean space but used on spherical space

(i.e., cosine similarity)





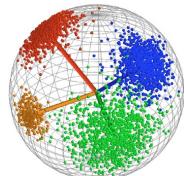


the two vectors are similar but opposite the first one encodes (city - country) while the second one encodes (country - city)

 $oldsymbol{ heta}$ is close to 180°

 $\cos(\theta) \approx -1$

Spherical Text Embedding [NeurIPS'19]: embeddings are normalized, and spherical clustering algorithms are used



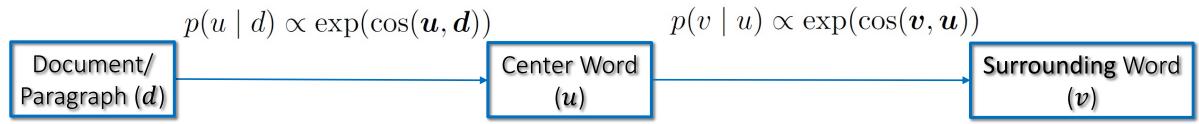
Joint Embedding: Integrating Local and Global Contexts

 Local contexts can only partly define word semantics in unsupervised word embedding learning

> Local contexts of "harmful"

taunting me to come out, you can be very sure that my Colt Delta Elite will also be coming with me. It is not the screwing with the car that would get them **shot**, it is the potential physical **danger**. If they are **taunting** like that, it's very possible that they also intend to **rob** me and or do other physically harmful things. Here in Houston last year a woman heard the sound of someone ...

- Design a generative model on the sphere that follows how humans write articles:
 - □ First a general idea of the paragraph/doc, then start to write down each word in consistent with not only the paragraph/doc, but also the surrounding words



Joint Spherical Embedding: Performance Comparison

Understanding the Spherical Generative Model

Step 1 Global context generates center word semantics A computer graphics document "images" "grey" "grey"

Step 1		*	Document d_i
	you create 8 grey level	images	and display them for
Step 2	×		▼

Word Similarity: Performance Comparison

Table 1: Spearman rank correlation on word similarity evaluation.

Embedding Space	Model	WordSim353	MEN	SimLex999
Euclidean	Word2Vec GloVe fastText BERT	0.711 0.598 0.697 0.477	0.726 0.690 0.722 0.594	0.311 0.321 0.303 0.287
Poincaré	Poincaré GloVe	0.623	0.652	0.321
Spherical	JoSE	0.739	0.748	0.339

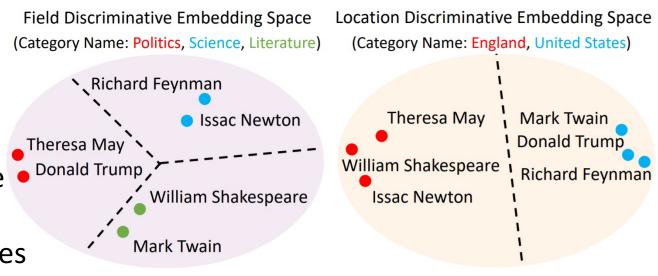
Table 5: Effect of Global Context on Interpreting Acronyms.

Acronyms	Global ($\lambda = \infty$)	Local ($\lambda = 0$)
CMU	mellon, carnegie,	andrew, kfnjyea00uh,
CIVIO	andrew, pa, pittsburgh	am2x, mr47, devineni
UIUC	urbana, illinois, uxa,	uxa, ux4, ux1,
Oloc	univ , uchicago	mrcnext, cka52397
UNC	chapel, carolina, astro,	launchpad, gibbs,
UNC	images, usc	umr, lambada, jge
Caltech	california, gap, institute,	juliet, jafoust, lmh,
Callecti	keith, technology	henling, bdunn
IHU	johns, camp, hopkins,	pablo, hasch, iglesias,
)110	nation, grand	davidk, atlantis

Global Context Helps Interpreting Acronyms

Discriminative Topic Mining via Category Name-Guided Embedding

- Traditional text embedding (e.g., Word2Vec, GloVe, fastText, JoSE)
 - Mapping words with similar local contexts closer in the embedding space
 - Not imposing particular assumptions on the type of data distributions
- CatE: Category Name-guided Embedding [WWW'20]
 - Weak guidance: leverages category names to learn word embeddings with discriminative power over the specific set of categories
- CatE: Inputs
 - Category names + Corpus
- CatE: Outputs
 - The same set of celebrities are embedded differently given different sets of category names



Method of CatE: Category-name guided text Embedding

- A category-name guided text embedding learning module (E):
 - □ Takes a set of category names to learn category distinctive word embeddings by modeling the text generative process conditioned on the user provided categories

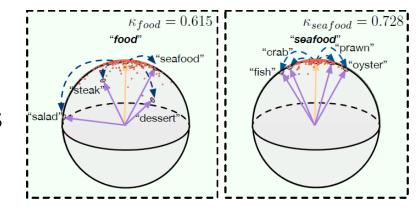
$$P(\mathcal{D} \mid C) = \prod_{d \in \mathcal{D}} p(d \mid c_d) \prod_{w_i \in d} p(w_i \mid d) \prod_{\substack{w_{i+j} \in d \\ -h \le j \le h, j \ne 0}} p(w_{i+j} \mid w_i)$$

- □ A category representative words retrieval module (R):
 - □ Selects category representative words based on both word embedding similarity

and word distributional specificity

The two modules (E + R) collaborate in an iterative way:

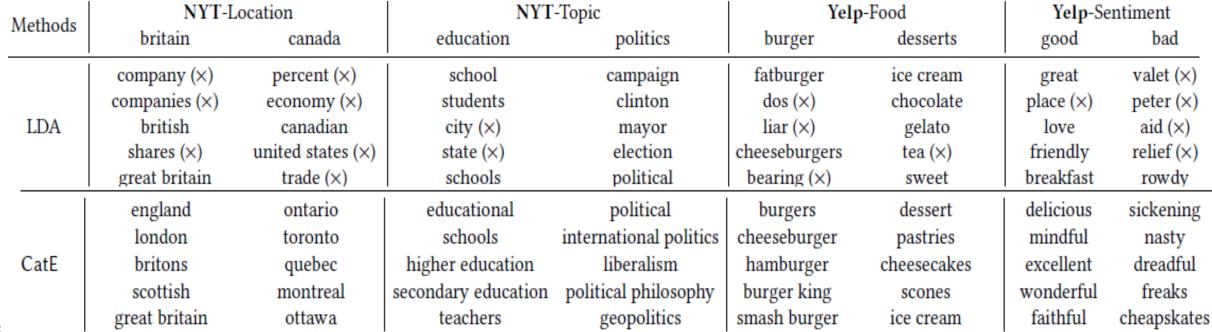
- E refines word embeddings and category embeddings
- R selects representative words that will be used by E in the next iteration



Performance Study on Discriminative Topic Mining

- Quantitative comparison
 - TC: topic coherence
 - MACC: Mean accuracy
- Qualitative Comparation of Discriminative Topic Mining

Methods	NYT-Location		NYT-Topic		Yelp-Food		Yelp-Sentiment	
Methods	TC	MACC	TC	MACC	TC	MACC	TC	MACC
LDA	0.007	0.489	0.027	0.744	-0.033	0.213	-0.197	0.350
Seeded LDA	0.024	0.168	0.031	0.456	0.016	0.188	0.049	0.223
TWE	0.002	0.171	-0.011	0.289	0.004	0.688	-0.077	0.748
Anchored CorEx	0.029	0.190	0.035	0.533	0.025	0.313	0.067	0.250
Labeled ETM	0.032	0.493	0.025	0.889	0.012	0.775	0.026	0.852
CatE	0.049	0.972	0.048	0.967	0.034	0.913	0.086	1.000



Hierarchical Topic Mining via Joint Spherical Tree and Text Embedding [KDD'20]

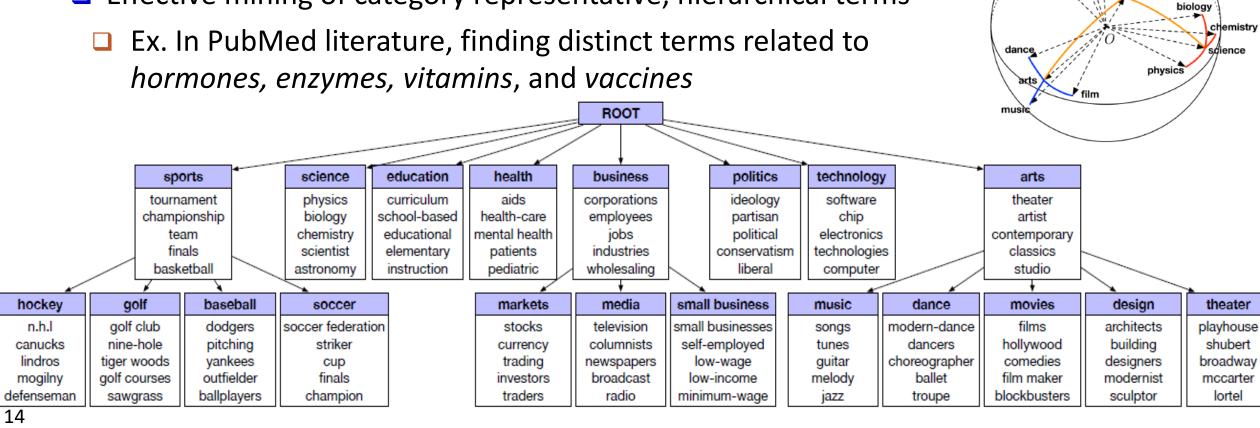
sports

basebal

science

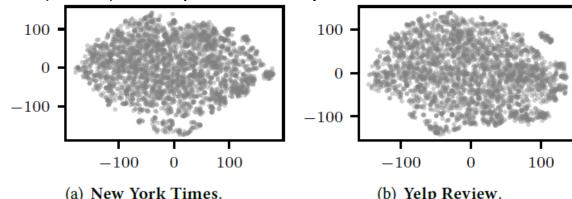
ROOT

- JoSH: A joint tree and text embedding method
- □ Simultaneous modeling of the category tree structure in the spherical space
- Effective mining of category representative, hierarchical terms



Topic Discovery via Latent Space Clustering of LM Embedding

- ☐ Yu Meng, Yunyi Zhang, Jiaxin Huang, Yu Zhang and Jiawei Han, "Topic Discovery via Latent Space Clustering of Language Model Embeddings", in WWW'22
- □ Task: Automatic discovery of coherent and meaningful topics from text corpora
- Limitations of topic modeling (a generative process)
 - Ignoring word ordering information in text (based on the "bag-of-words" assumption)
 - cannot leverage external knowledge to learn word semantics, and
 - Inducing an intractable posterior that requires approximation algorithms
- Why not directly deploy pre-trained language models (PLMs) for topic discovery?
 - ☐ The PLM embedding space is partitioned into extremely fine-grained clusters and lacks topic structures inherently
 - PLM embeddings are high-dimensional while distance functions can become meaningless
 - Lack of good document representations from PLMs



Visualization of 3, 000 randomly sampled contextualized word embeddings of BERT: The embedding spaces do not have clearly separated clusters.

Qualitative Evaluation of Topic Discovery

Corpus	# documents	# words/doc.	Vocabulary
NYT	31,997	690	25,903
Yelp	29,280	114	11,419

			NYT			Yelp				
Methods	Topic 1 (sports)	Topic 2 (politics)	Topic 3 (research)	Topic 4 (france)	Topic 5 (japan)	Topic 1 (positive)	Topic 2 (negative)	Topic 3 (vegetables)	Topic 4 (fruits)	Topic 5 (seafood)
	olympic	mr	said	french	japanese	amazing	loud	spinach	mango	fish
	year	bush	report	union	tokyo	really	awful	carrots	strawberry	<u>roll</u>
LDA	said	president	evidence	germany	year	place	sunday	greens	vanilla	salmon
	games	white	findings	workers	matsui	phenomenal	<u>like</u>	salad	banana	fresh
	team	house	defense	paris	<u>said</u>	pleasant	slow	dressing	peanut	good
	baseball	house	possibility	french	japanese	great	even	garlic	strawberry	shrimp
	championship	white	challenge	italy	tokyo	friendly	bad	tomato	caramel	beef
CorEx	playing	support	reasons	paris	<u>index</u>	atmosphere	mean	onions	sugar	crab
	fans	groups	give	francs	osaka	love	cold	toppings	fruit	dishes
	league	member	planned	jacques	electronics	favorite	literally	slices	mango	<u>salt</u>
	olympic	government	approach	french	japanese	nice	disappointed	avocado	strawberry	fish
	league	national	problems	students	agreement	worth	cold	greek	mango	shrimp
ETM	national	plan	experts	paris	tokyo	<u>lunch</u>	review	salads	sweet	lobster
	basketball	public	move	german	market	recommend	experience	spinach	soft	crab
	athletes	support	give	american	european	friendly	bad	tomatoes	flavors	chips
	swimming	bush	researchers	french	japanese	awesome	horrible	tomatoes	strawberry	lobster
	freestyle	democrats	scientists	paris	tokyo	atmosphere	quality	avocado	mango	crab
BERTopic	popov	white	cases	lyon	ufj	friendly	disgusting	soups	cup	shrimp
	gold	bushs	genetic	minister	company	night	disappointing	kale	lemon	oysters
	olympic	house	study	billion	yen	good	place	cauliflower	banana	amazing
	athletes	government	hypothesis	french	japanese	good	tough	potatoes	strawberry	fish
	medalist	ministry	methodology	seine	tokyo	best	bad	onions	lemon	octopus
TopClus	olympics	bureaucracy	possibility	toulouse	osaka	friendly	painful	tomatoes	apples	shrimp
	tournaments	politicians	criteria	marseille	hokkaido	cozy	frustrating	cabbage	grape	lobster
	quarterfinal	electoral	assumptions	paris	yokohama	casual	brutal	mushrooms	peach	crab

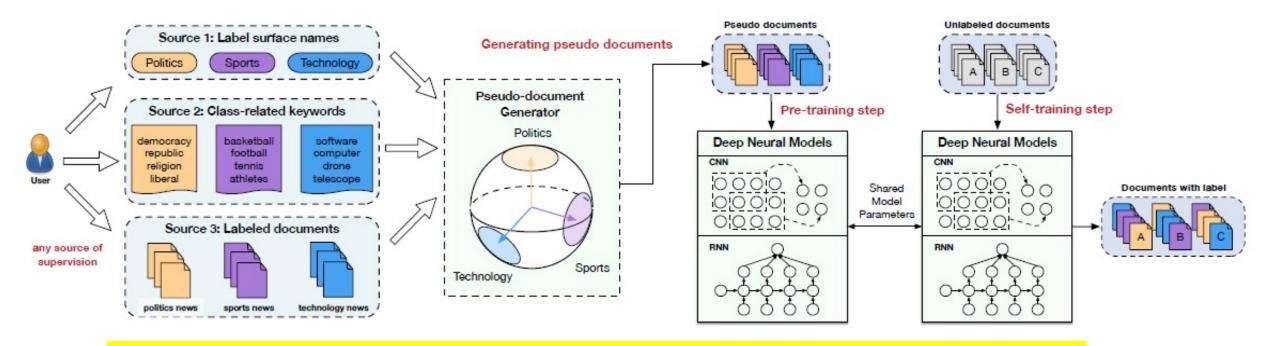
Outline

- What Kinds of Text-Rich Information Networks Do We Really Need?
- Key Issue: Construction of Theme-/Corpus-Based Information Networks
- The Role of Embedding and PLM in Information Network Construction
- Data Preparation: Taxonomy-Guided Text Classification

- Identifying Information Network Primitives: Entities, Properties and Relations
- Conclusion: Towards Theme/Corpus-Based Information Network Construction

WeSTClass: Weakly Supervised Text Classification

- Modeling class distribution in word2vec embedding space
 - Word2vec embedding captures skip-gram (local) similarity (i.e., words with similar local context windows are expected to have similar meanings)



WeSTClass (Weakly Supervised Text Classification): CIKM'18
WeSHClass (Weakly Supervised Hierarchical Text Classification): AAAI'19

LOTClass: Label-Name-Only Text Classification [EMNLP'20]

- □ Yu Meng, et al., "Text Classification Using Label Names Only: A Language Model Self-Training Approach" [EMNLP'20]
- □ Inputs: A set of label names representing each class + unlabeled documents
- Method (3 steps): Make good use of pre-trained language model (e.g., BERT)
 - Step 1. Category understanding via label name replacement (learn topic vocabulary)
 - \blacksquare Ex. "sports" \rightarrow {"soccer", "basketball", ...} (use pretrained LM to replace category name)

- Learn topic vocabulary using label name only
- Make good use of pretrained LM (e.g., BERT)
- Result from AGNews dataset

Label Name	Category Vocabulary				
politics	politics, political, politicians, government, elections, politician, democracy, democratic, governing, party, leadership, state, election, politically, affairs, issues, governments, voters, debate, cabinet, congress, democrat, president, religion,				
sports	sports, games, sporting, game, athletics, national, athletic, espn, soccer, basketball, stadium, arts, racing, baseball, tv, hockey, pro, press, team, red, home, bay, kings, city, legends, winning, miracle, olympic, ball, giants, players, champions, boxing,				
business	business, trade, commercial, enterprise, shop, money, market, commerce, corporate, global, future, sales, general, international, group, retail, management, companies, operations, operation, store, corporation, venture, economic, division, firm,				
technology	technology, tech, software, technological, device, equipment, hardware, devices, infrastructure, system, knowledge, technique, digital, technical, concept, systems, gear, techniques, functionality, process, material, facility, feature, method,				

LOTClass: Label-Name-Only Text Classification

Step 2: Masked topic prediction: Create contextualized word-level supervisions to train the model for predicting a word's implied topic

Different contexts leads to different BERT language model prediction

The oldest annual US team **sports** competition that includes professionals is not in baseball, or football or basketball or hockey. It's in soccer.

Sentence

Samsung's new SPH-V5400 mobile phone **sports** a built-in 1-inch, 1.5-gigabyte hard disk that can store about 15 times more data than conventional handsets, Samsung said.

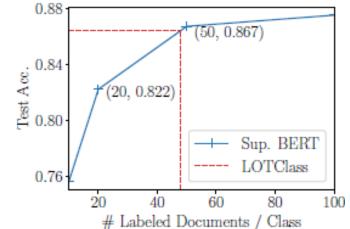
Language Model Prediction

sports, baseball, handball, soccer, basketball, football, tennis, sport, championship, hockey, . . .

has, with, features, uses, includes, had, is, contains, featured, have, incorporates, requires, offers, . . .

Step 3: Self-training: Generalize the model via self-training on abundant unlabeled data to make document-level topic prediction

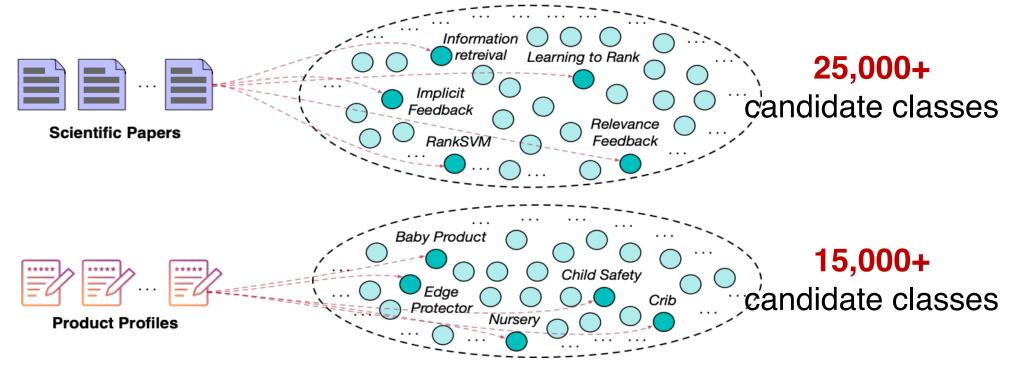
Supervision Type	Methods	AG News	DBPedia	IMDB	Amazon
	Dataless (Chang et al., 2008)	0.696	0.634	0.505	0.501
	WeSTClass (Meng et al., 2018)	0.823	0.811	0.774	0.753
Weakly-Sup.	BERT w. simple match	0.752	0.722	0.677	0.654
	LOTClass w/o. self train	0.822	0.860	0.802	0.853
	LOTClass	0.864	0.911	0.865	0.916
Semi-Sup.	UDA (Xie et al., 2019)	0.869	0.986	0.887	0.960
Supervised	char-CNN (Zhang et al., 2015)	0.872	0.983	0.853	0.945
Supervised	BERT (Devlin et al., 2019)	0.944	0.993	0.945	0.972



Label-name only is equiv. to 48 labels in Supervised BERT

Need: "Structuring"/Tagging Unstructured Documents

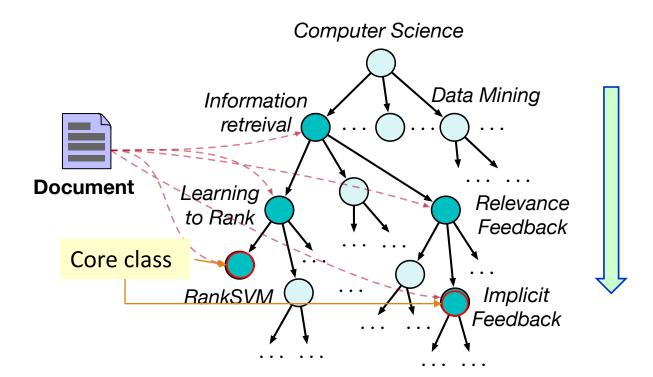
Task: Tag each doc. with a set of relevant classes from a huge candidate pool

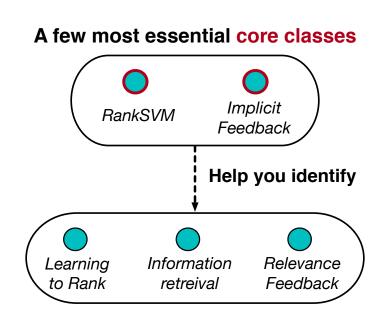


- Challenges:
 - Huge label space, multi-label tagging
 - ☐ Limited labeled data— hard for supervised models

TaxoClass [NAACL'21]: Taxonomy Comes to Rescue

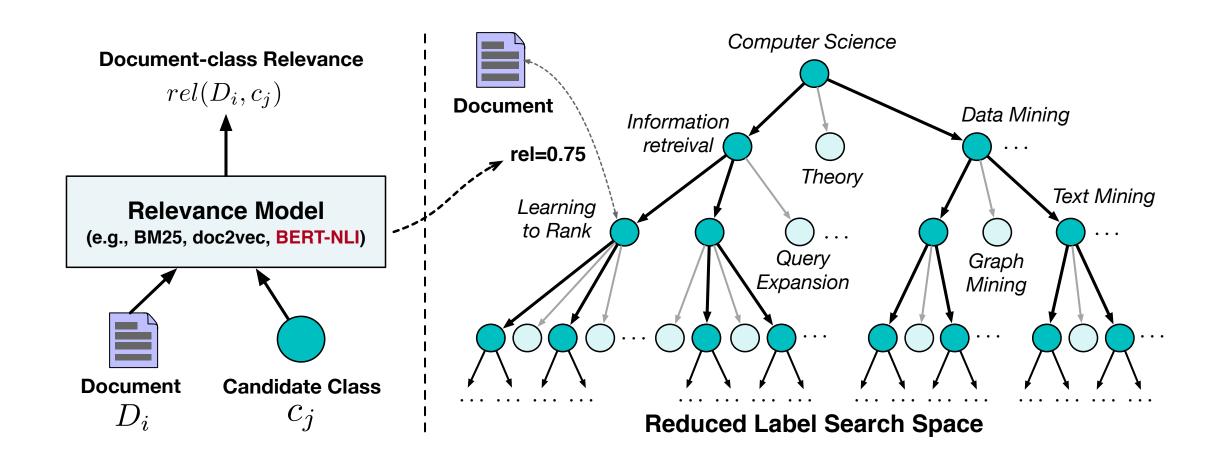
- J. Shen, et al. "TaxoClass: Hierarchical Multi-Label Text Classification Using Only Class Names", NAACL'21
- Taxonomy!— Structure the huge label space by organizing classes hierarchically
 - Enable fast label space exploration in a top-down way
- ☐ Facilitate multi-label tagging by capturing class relations





TaxoClass: A Weakly-Supervised Classification Method based on Taxonomy

- □ Shrink the label search space with top-down exploration
 - ☐ Use a **relevance model** to filter out completely irrelevant classes for each document



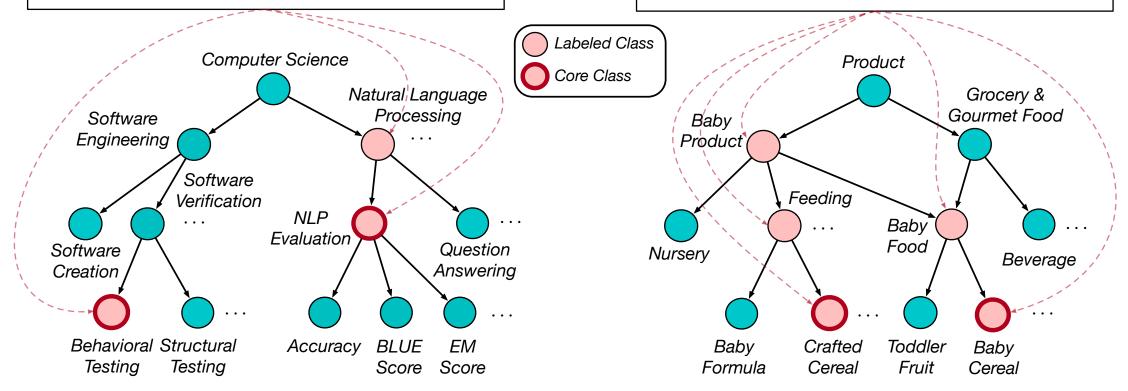
TaxoClass: Case Studies

Document

Inspired by principles of **behavioral testing** in software engineering, we introduce CheckList, a taskagnostic methodology for **testing NLP models**...

Document

When our **son** was about **4 months old**, doctor said we could give him **crafted cereal** so we bought it. It digests well and doesn't lock up his bowels at all ...



TaxoClass: Performance Comparison

	Methods	Amazo	n	DBPed	a
Weakly-supervised multi-		Example-F1	P@1	Example-F1	P@1
	WeSHClass (Meng et al., AAAI'19)	0.246	0.577	0.305	0.536
Semi-supervised methods	SS-PCEM (Xiao et al., WebConf'19)	0.292	0.537	0.385	0.742
	Semi-BERT (Devlin et al., NAACL'19)	0.339	0.592	0.428	0.761
Zero-shot method	Hier-OShot-TC (Yin et al., EMNLP'19)	0.474	0.714	0.677	0.787
	TaxoClass (NAACL'21)	0.593	0.812	0.816	0.894
	Example-F1 = $\frac{1}{N}\sum_{i=1}^{N} \frac{2 t }{ t }$	$\frac{rue_i \cap pred_i }{rue_i + pred_i }$, P($01 = \frac{\#doc}{}$	s with top-1 pred #total docs	dorrect

- vs. WeSHClass: better model document-class relevance
- vs. SS-PCEM, Semi-BERT: better leverage supervision signals from taxonomy
- vs. Hier-OShot-TC: better capture domain-specific information from core classes

Amazon: 49K product reviews (29.5K training + 19.7K testing), 531 classes

DBPedia: 245K Wiki articles (196K training + 49K testing), 298 classes

Outline

- What Kinds of Text-Rich Information Networks Do We Really Need?
- Key Issue: Construction of Theme-/Corpus-Based Information Networks
- The Role of Embedding and PLM in Information Network Construction
- Data Preparation: Taxonomy-Guided Text Classification
- Identifying Information Network Primitives: Entities, Properties and Relations

Conclusion: Towards Theme/Corpus-Based Information Network Construction

The ChemNER Framework

Input Corpus

Entity Span Detection

<u>S1</u>: [Methyl-14C]S-dThd was synthesized by rapid methylation of ...

<u>S2</u>: ... **Suzuki-Miyaura cross-coupling reactions** were carried out ...

<u>S3</u>: Although it was necessary to employ a stoichiometric quantity of **palladium**, it is noteworthy that the **cross-coupling** proceeded in the presence of a wide array of **functional groups**.

<u>S4</u>: ... can undergo a **transmetalation** with either **BBA** or the rapidly forming **boronic acid** ...

Flexible KB-Matching

—— Knowledge Bases

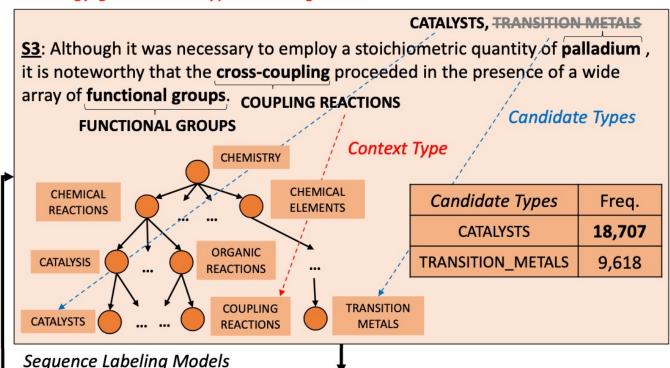
S1: [Methyl-14C]S-dThd was synthesized by rapid methylation of ...
ORGANIC COMPOUNDS, ORGANIC POLYMERS ORGANIC REACTIONS

TF-IDF Scores	ORGANIC COMPOUNDS	ORGANIC POLYMERS	Biomolecules	
methyl	0.0177	0.0139	0.0010	
thd	0.0256	0.0115	0.0417	

<u>S2</u>: ..., <u>Suzuki-Miyaura cross-coupling reactions</u> were carried out ...

COUPLING REACTIONS

Ontology-guided Multi-type Disambiguation



BiLSMT-CRF, RoBERTa, ChemBERTa, ...

ORGANOMETALLIC CHEMISTRY

??? [NOT IN KB] => OXOACIDS

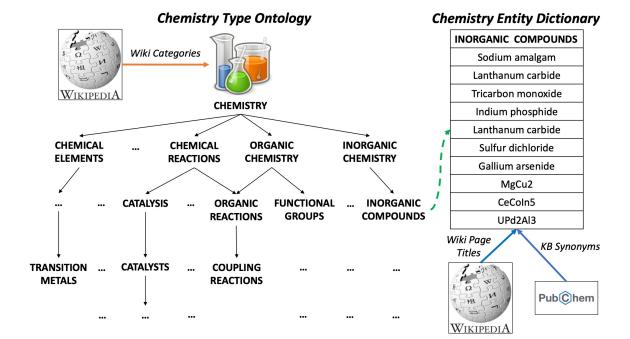
<u>S4</u>: ... can undergo a **transmetalation** with **either BBA or** the rapidly forming **boronic acid** ...

OXOACIDS

"either ... or ..." pattern learned by Sequence Labeling Model

Chemistry Ontology

- Fine-grained chemistry type ontology:
 - Wikipedia categories rooted under *Chemistry*
 - Categories => Entity Types
 - Associated Page Titles => Entity Dictionaries
 - **Expert proved 62 fine-grained types**



Category: Chemistry

From Wikipedia, the free encyclopedia

Subcategories

This category has the following 73 subcategories, out of 73 total.

- ► Chemists (12 C. 3 P)
- ► Chemistry set index pages (1 C, 655 P)
- ► Chemical elements (132 C, 127 P)

- ► Acid-base chemistry (5 C, 49 P)
- ► Analytical chemistry (19 C, 222 P)
- Astrochemistry (1 C, 38 P)
- Atmospheric chemistry (24 P)

Chemistry literature (3 C, 2 P)

- Materials science (35 C, 400 P)
- ► Medicinal chemistry (8 C, 77 P, 10 F)
- ► Metallurgy (14 C, 161 P)
- Microwave chemistry (4 P)
- ► Chemical mixtures (6 C, 44 P)
- Molecular physics (10 C, 79 P)
- Molecules (10 C, 20 P)

- ► Chemical nomenclature (4 C, 84 P)
- Nuclear chemistry (8 C, 59 P)

Pages in category "Chemistry"

The following 132 pages are in this category, out of 132 total. This list may not reflect recent changes (lea more).

- Chemistry
- Portal:Chemistry

0-9

2-Hexoxyethanol

- Acid-base reaction
- Actinide chemistry
- Allotropy
- Alloy

- Fluorine cycle
- Forensic chemistry
- Free element

- Geometry index
- Glossary of chemistry terms
- Gold cycle
- Green chemistry

Harbi al-Himyari

Chem NER: Performance Comparison

Dataset:

- Training: 85,702 unlabeled sentences + 62 fine-grained chemistry types
- ☐ Test: **3,000** expert-annotated sentences

Supervised
NER

Distant NER

	Method	Precision	Recall	F1 Score
	KB-Matching	0.21	0.12	0.15
	BiLSTM-CRF (2016)	0.22	0.10	0.14
<i>)</i>	RoBERTa (2019)	0.24	0.18	0.20
	ChemBERTa (2020)	0.18	0.12	0.14
	AutoNER (2018)	0.21	0.04	0.06
	BOND (2020)	0.19	0.13	0.15
	ChemNER (2021)	0.69	0.34	0.46

$$Precision (P) = \frac{\#Truth \ Positive}{\#Prediction}$$

$$Recall(R) = \frac{\#True\ Positive}{\#Ground - Truth}$$

$$F1 \, Score = \frac{2 \times P \times R}{P + R}$$

+0.26 absolution F1 ↑

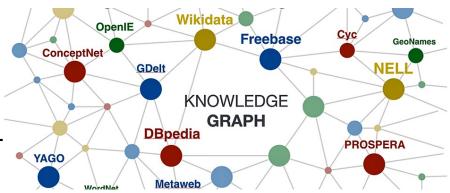
Outline

- What Kinds of Text-Rich Information Networks Do We Really Need?
- Key Issue: Construction of Theme-/Corpus-Based Information Networks
- The Role of Embedding and PLM in Information Network Construction
- Data Preparation: Taxonomy-Guided Text Classification
- Identifying Information Network Primitives: Entities, Properties and Relations

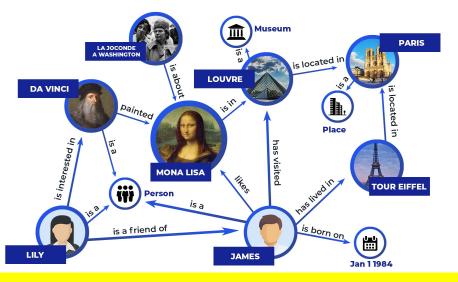
Conclusion: Towards Theme/Corpus-Based Information Network Construction

Conclusions

- What kinds of info. networks do we really need?
 - ☐ Theme-/corpus-based info. networks
- Key issue: Automated construction of theme-/corpusbased info. networks from text
 - Exploring the power of embedding and Pre-tained Language Models (PLMs)
 - Collecting and preparing data using taxonomyguided text classification
 - Identifying info. networks primitives: entities, properties and relations
- Towards theme/corpus-based info. networks construction



Typical KGs from Knowledge-Bases



Typed Entity-Relation-Property Graphs from Text